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Abstract. An extremely quantized OD system is studied for better understanding of an importance
of many-body corrections to an one-electron spectrum. A new approach is proposed to describe
the correction appearing as a depolarisation level shift of a (confined) electron moving within an
electric field of a (confined) collective mode. For a quantum dot the correction diminishes at
the size about 104_ 105 atoms, depending also on other system parameters. For a closed-shell
carbon cluster the effect does not depend on the cluster size owing to stronger quantization and
the one-electron estimation does not fit anywhere. For the semiconductor quantum dot system an
experimental method to check the depolarisation model is proposed.

In the paper we study an anomalous large level shift, resulted from the interaction of an
electron in a 0D-system with zero-point oscillations of confined modes of the electric field.
Of course, any complete many-body theory, taking into account all the Coulomb interaction,
gives the correct value for the electron levels, though it is not known for present. We go
to reveal an important correction treating the effect of valence electrons of a OD object,
which can be a spherical quantum dot and a closed-shell fullerene cluster, selfconsistently.
Then the theory remains to be semi-classical while a nature of the effect is quantum-
electrodynamical. This continues our consideration of C 60 in frame of a simple quantum
mechanical model of the spherical-shell quantum well (SSQW) [ ].

The energy correction depends on the system radius. This size scaling of the depolari-
sation is computed within an approach proposed by Migdal [ ] for a calculation of Lamb
shift in a hydrogen-like atom. The shift of the one-electron level is quite predictable and we
will show that its amount becomes very large for the quantized system. The closed-shell
fullerene depolarisation is of the order of the bare energy and independent of the cluster
radius while the shift in the quantum dot decreases with the increasing number of atoms.
Between two examples - a fullerene carbon nanocluster and a semiconductor quantum
dot structure - the latter has not only theoretical importance. The possible experimental
manifestation of the depolarisation effect is proposed basing on the spectroscopy of the
quantum dot levels for different matrix materials.

1. Theory for depolarisation level shift: C 60

1. The use of the group of full rotations, SO(3), allows one to label the one-electron states
and to get analytically the solution for the selfconsistent RPA response function of C60 I ].
A peak of a collective excitation shows up in this spectrum, resulting from fast coherent
oscillations of a total electron density of valence states. This surface density oscillation
can be thought as a confined electrical field mode or the surface plasmon.

We have considered semiclassically the LS for an arbitrary shell object in [ followed
to Migdal [ ]. The frequency of the zero-point fluctuations of the external field is much
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higher than the inverse period of the electron orbit wp >> 7r/r. Therefore, the adiabatic
approximation has to be used and one divides the fast (field) and slow (electron) variables.
An electron is subjected to short fast deflections from its original orbit in the high-frequency
field of the electromagnetic wave of the zero-point fluctuation. Then the energy shift is
given by the second order perturbation theory as

E= (H(r+ )-H(r)) =VH.v+Iv2H .+ 4V2HT+°(T) (1)

where H(r) is the unperturbed Hamiltonian and H(r + 6) is the Hamiltonian with account
for the random electron deflection 6. The angle brackets represent the quantum mechan-
ical average over the fast variables of the field (or, the same, over the random electron
deflections). The perturbed Hamiltonian is expanded in series on the 6 and a first nonzero
contribution is taken.

The expression for the mean square of the deflection, T2 was deduced in Ref. [
Though the estimation is semiquantitative, the deflection is of the order of atomic unit,
a -- 0.53 A. The T2 in the SSQW does not depend on the radius, neither on the number
of atoms because of the density of the valence electrons is the same.

Let suppose that one-electron model works for some cluster CN. The one-electron
Hamiltonian reads as [ ]:

Ho = E, + h2 /2mR 2 L2, (2)

where E, is the energy of a lowest level of n-th radial series; an orbital quantization energy
h2 /mR 2 defines the SO(3) level spacing between eigenstates of the angular momentum
operator. The SSQW level shift reads as follows:

L(0) (I + L2/N) (3)

where K - 0.36 is the numerical coefficient depending only on b, the carbon bond length:
K = IaBlbr 2 /2 2 5 /3.

2. Within the closed-shell model the optical gap occurs between the levels ILF) and
ILF + 1). Within the closed-shell approximation the Fermi momentum fulfills the condition
N = 2 -�� 0 (2L + 1) = 2(LF + .)2. The gap value does depend on the cluster size,
decreasing to the zero as N going to infinity in order to approach the gapless graphite.

The depolarisation makes the gap wider. The renormalisation is universal for any
closed-shell spherical cluster and amounts about 40% to the bare value:

Eg = E°) (I + K) -- 1.36E•0 ). (4)

where the parameter K -- 0.36 is the same as before.

2. Depolarisation energy level shift in QD structure

1. In order to evaluate the LS for the quantum dot (QD) the simplified spherical model in
frame of an effective mass approximation was applied. The size scaling of the depolarisation
shift is not sensitive to the model used, being dependent mainly on the corresponding density
of states of the collective modes.

The simplest QD Hamiltonian is considered to have only the rotational correction which
reads as:

6H= L2 (-2 + 3 6--2 ) (5)3H = 2mR-----_F ...
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where R is about the spherical QD radius; m is the electron mass which is supposed to be
constant within the dot; L is the angular momentum operator.

Nearly self-evidently the bulk plasmon shift is negligible. The small factor, contained
in the 3D LS, comes essentially from the expression for T2 which scales as 1/N [ ], where
N is the number of atoms in the QD. The mean square deflection, caused by the 3D mode
(which is not confined at all), decreases with N too rapidly.

The square of the deflection 62] = e2 /4m 2 f d 3k 2kIN is proportional to the

square of the electric field strength. The field strength can be rewritten as the zero-point
oscillation frequency S2 = 27rhwOk through the quantized field normalisation. The 3D
plasmon frequency does not depend on the quantum number k. Hence, the mean square
deflection contains the total number of states effecting on the electron level in the QD.
The integral is limited above by kax - 1/R. In 3D-case it brings the factor R-3 - N-1
claimed in the beginning of the section. Then the depolarisation level shift due to 3D modes
scales with N as follows: 6E N -5/3.

A3D - CC NO (6)

The rude estimation of the prefactor shows that even for the small QD with N = 100 the
shift is 10-6 of the bare energy and will not be resolved because of a number of other
different factors effecting the level position.

To give a complete picture, the standard LS due to the zero-point oscillations of the
free electromagnetic modes of the vacuum reads as follows: Avac 0C c 3N-2/ 3, where
a 1 / 137 is the fine structure constant. Though the slope of the LS in N is much slower
than in Eq. (6) the prefactor is tiny because of a 3 .

2. Two possible candidates for the confined plasmon modes in the QD system are the 2D
plasmon and the OD spherical mode. The former mode can arise because of some interface
possibly grown within the structure (see inset in Fig. 1). It might be a wetting layer, if it
is thick enough to confine the electromagnetic field. The 2D plasmon naturally originates
at the boundary between the semiconductor structure and a distinct substrate. The scaling
in N will have a lower exponent that reflects the different density of the confined field
(plasmon) states: A2D cc N-7/6. The shift depends on the inverse size nearly linearly.
However, the prefactor dominates at some moderate size of the QD and lessens the LS
to 10-3 for N = 100. The depolarisation is still to be too small to expect experimental
consequences.

3. The 62 considered above the less, the larger the QD size, that is not the case for the
deflection due to completely localized modes like in Sec. 1. In this section the localized
modes are the surface plasmons of the spherical inclusion (with the dielectric function E1)
in the matrix (with the different dielectric function E2). A oc N-2/ 3 . Our estimation shows
that the level correction, becoming of the order of 50%, plays the important role for the
QD of 100 atoms and smaller. We collected all studied contributions to the depolarisation
LS and plot them in the log-log scale versus the QD size in Fig. 1.

The depolarisation because of the localized surface QD modes is large enough to propose

an experiment supporting our model. It is easy to check that T2 OL3, which is nearly
the frequency of the bulk plasmon in the matrix (with the weak dependence on the mode
angular momentum, see [ 1). Therefore, changing the optical properties of the matrix
surrounding the QD, one shifts the levels. If the bare energy level lies deep in the potential
well, its position is nearly independent of the well depth which changes along with the
matrix parameters. The deep bare level energy depends only on the well width. Hence, the
depolarisation LS is distinguishable from the standard space quantization LS.
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Fig. 1. The level shift of the QD electron, calculated for 4 different depolarisation mechanisms.
The slopes and the prefactors of these depolarisation shifts were derived analytically. Inset: The
scheme of the QD structure to model.

In summary, the effect of the zero-point oscillations of the free and confined electromag-
netic field on the level of the confined electron in the OD-system, as the closed-shell carbon
cluster and the spherical QD, is studied. The depolarisation due to an interaction with
the zero-point fluctuations shifts up the bare one-electron state. The gap renormalisation,
which follows from the angular momentum dependent LS in the fullerene cluster, is shown
to be independent of the fullerene radius. The size dependence of LS in the QDs is different
for 4 modes considered in the paper. Although, in general, the depolarisation decreases
with the QD size, the localized surface electromagnetic mode results in the essential level
shift and is to be possibly resolved experimentally for a QD made from some hundreds
atoms. Another method to detect the effect could be a measurement of a deep level position
of the similar QDs buried by the substrates with distinct optical characteristics.
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